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Abstract

In this work, an analysis and numerical study have been carried out in order to determine the best candidate brick from the thermal
point of view by the finite element method. With respect to the ecological design and the energy saving for housing and industrial struc-
tures, there is also a great interest in light building materials with good physical and thermal behaviours, which fulfils all thermal require-
ments of the new CTE Spanish rule for further energy savings. The conduction, convection and radiation phenomena are taking into
account in this study for four different types of bricks varying the material conductivity obtained from the experimental tests. Based
on the previous thermal analysis, the best candidate was chosen and then a full 1.05 � 0.35 � 1.0 m. wall made of these bricks was sim-
ulated for fifteen different compositions and temperature distribution is also provided for some typical configurations. The major vari-
ables influencing the thermal conductivity of these walls are illustrated in this work for different concrete and mortar properties. The
finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for light concrete hollow brick walls.
Mathematically, the nonlinearity is due to the radiation boundary condition inside the inner recesses of the bricks. Optimization of the
walls is carried out from the finite element analysis of four hollow brick geometries by means of the average mass overall thermal effi-
ciency and the equivalent thermal conductivity. In order to select the appropriate wall satisfying the CTE requirements, detailed instruc-
tions are given. Finally, conclusions of this work are exposed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The Kyoto Protocol is an agreement made under the
United Nations Framework Convention on Climate
Change (UNFCCC). Countries that ratify this protocol,
including Spain, commit to reduce their emissions of car-
bon dioxide and five other greenhouse gases, or engage in
emissions trading if they maintain or increase emissions
of these gases. This Protocol now covers more than 160
countries globally and over 55% of global greenhouse gas
(GHG) emissions.
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These government organizations are working closely
with their major utility, energy, oil and gas and chemicals
conglomerates in order to decrease the GHG emissions.
At present time, energy consumption of buildings in Spain
and other States of the European Union (EU) is a high-pri-
ority subject. For this reason the buildings sector has been
studied as part of a broader examination in relation to a
rational fuel use and emissions in Spain and the rest of
the EU countries. Our aim is the reduction of the energy
consumption in the Spanish buildings for the best thermal
protection of the external enclosure.

The thermal conditions for the Spanish buildings are
defined at present by the new Building Standard Code
(named CTE project [1]). This rule modifies the previous
Spanish rule, the oldest rule of Europe, completely obsolete
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Nomenclature

A surface area of the body through which heat
flows (m2)

c specific heat of the material (J/(kg K))
CSI climate severity index (dimensionless)
E thickness of the brick (m)
ethermal_p mass overall thermal efficiency in percentage

(m2 K/W/kg)
h heat transfer coefficient or film coefficient (W/

(m2 K))
hr radiation heat transfer coefficient (W/(m2 K))
k thermal conductivity of the material (W/(m K))
kx thermal conductivity of the material in x-direc-

tion (W/(m K))
lx, ly, lz direction cosines of the outward drawn normal

to the boundary
M mass (kg)
Rtot overall thermal resistance of the wall, taking

into account the corrections due to moisture
and holes, and film coefficients (m2 K/W)

Rsi internal surface resistance of the wall (m2 K/W)
Rse external surface resistance of the wall (m2 K/W)
S1 boundary on which the value of temperature is

specified as T0(t) (Dirichlet condition)
S2 boundary on which the heat flow q is specified

(Neumann condition)
S3 boundary on which the convective heat loss

h(T � T1) is specified (convective Neumann
condition)

T temperature of the body or surface temperature
(K)

�T 0 specified temperature distribution at time zero
(K)

T1 temperature of the surrounding medium (K)
DT difference of temperature (K)
t time parameter (s)
q rate of heat flow or heat flux (W/m2)
_q strength of the heat source (rate of heat gener-

ated per unit volume per unit time) (W/m3)
Uwall thermal transmittance (W/m2 K)
U overall heat transfer coefficient (W/m2 K)
V volume of the body (m3)
x length parameter (m)
r Stefan–Boltzmann constant (=5.67 � 10�8 W/

m2 K4)
e emissivity of the surface (dimensionless and

e = 0.85)
q density of the material (kg/m3)
kt real conductivity of the material obtained in

tests (W/m K)
ke estimated conductivity of the brick from the fit-

ting data (W/m K)
kmortar conductivity of the mortar (W/m K)
kequivalent equivalent thermal conductivity (W/m K)
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from the technical point of view, since it allowed very high
energy consumptions and it did not meet all the current
demands of the Spanish society in this aspect.

The CTE rule, in its requirement of habitability and
energy saving, introduces modifications that improve the
scarce requirements of the same one by means of improve-
ment of thermal insulation of the building’s enclosure.

However, the CTE rule does not totally take advantage
of the different possibilities of decrease of the energy needs
of a building. It is possible to show that we can increase the
capacity of insulation in the facades of the buildings (both
in walls and in glass rooms) beyond the prescribed one in
the CTE project, keeping a good profitability of the
investment.

The energy demand of buildings in the CTE rule is lim-
ited depending on the city climate and the internal load in
Table 1
Climatic severity indexes for winter

A B C

CSI = 0.3 0.3 < CSI 6 0.6 0.6 < CSI 6
their rooms. In order to calculate the different climatic
zones inside a country, it is necessary to know climatic data
of the same. The determination of climatic zones is
obtained from the climate severity index (CSI), both in
winter and in summer seasons. The CSI combines the
degree-day and the solar radiation of the city, so that
when two towns have the same winter CSI the energy
consumption of the same building is almost equal. The
same consideration is applied to the summer CSI. There
are five different climatic zones in winter (A, B, C, D and
E) and four in summer (1, 2, 3 and 4), according to Tables
1 and 2.

In order to avoid decompensations between the thermal
qualities of different rooms, each one of internal and exter-
nal walls of thermal enclosure will have a transmittance
lower than the values shown in Table 3.
D E

0.95 0.95 < CSI 6 1.3 CSI > 1.3



Table 2
Climatic severity indexes for summer

1 2 3 4

CSI = 0.6 0.6 < CSI 6 0.9 0.9 < CSI 6 1.25 CSI > 1.25

Table 3
Maximum thermal transmittance of external walls

Climatic zone Thermal transmittance Uwall [W/m2 K]

A3 0.93
A4 0.94
B3 and B4 0.82
C1, C2, C3 and C4 0.73
D1, D2 and D3 0.66
E1 0.57
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2. Geometry and shape variables

In the first place, we have modeled four different types of
light concrete hollow bricks (see Fig. 1 below) designed
according to the performance of the brick’s previous model
M1 [2,3] in order to improve the thermal behavior of the
Fig. 1. Geometrical model and dimensions (long � width � hig
same ones [4,5] following the requirements of the new
CTE Rule [1].

Just as it is shown in Fig. 1, the four types of bricks (N1,
N2, N3 and N4) have the same external dimensions. These
dimensions will be kept constant in the calculation and the
subsequent optimization process due to ergonomic reasons.
The human body’s response to physical loads in the build-
ing of the wall is strongly related to the total mass of the
brick. This last requirement limits the external maximum
dimensions of the brick’s design to the values previously
indicated above.

The main differences between them are focused on two
important aspects:

(1) The shape and dimensions of the central recesses.
(2) The length of the recesses in the longitudinal

direction.

For instance, bricks N2 and N4 are very similar with
respect to the shape of the recesses. The difference between
them is the length of all the recesses. However, bricks N1,
N2 and N3 are only different with respect to the shape and
dimensions of the central recesses.
h) of the bricks N1, N2, N3, and N4: 0.3 � 0.35 � 0.19 m.



Fig. 2. Geometrical model of a wall composed of bricks N2.

J.J.d. Coz Dı́az et al. / International Journal of Heat and Mass Transfer 51 (2008) 1530–1541 1533
Secondly, the wall is composed of 25 bricks and six
halves at half must, joined to each other by a half layer
mortar of 0.01 m high and 0.08 m width. The overall
dimensions of the wall are 1.05 � 0.35 � 1.0 m. (see Fig. 2).

3. Mathematical model of heat equation

3.1. Boundary and initial conditions

Since the governing differential equation of heat transfer
is second-order in space, two boundary conditions need to
be specified. The possible boundary conditions are (see
Fig. 3) [6–9]:
Fig. 3. Three-dimensional model with boundary conditions.
T ðx; y; z; tÞ ¼ T 0 for t > 0 on S1 ð1Þ

kx
oT
ox

lx þ ky
oT
oy

ly þ kz
oT
oz

lz þ q ¼ 0 for t > 0 on S2 ð2Þ

and

kx
oT
ox

lx þ ky
oT
oy

ly þ kz
oT
oz

lz þ h T � T1ð Þ ¼ 0

for t > 0 on S3 ð3Þ

Further the differential equation of heat transfer is first-or-
der in time t and hence it requires one initial condition. The
commonly used initial condition is

T ðx; y; z; t ¼ 0Þ ¼ �T 0ðx; y; zÞ in V ð4Þ
3.2. Variational or weak formulation of the problem

Thus the problem of finding the temperature distribu-
tion inside a solid body involves the solution of heat trans-
fer equation subject to the satisfaction of the boundary
conditions of Eqs. (1)–(3) and the initial condition given
by Eq. (4).

The three-dimensional heat conduction problem can be
stated in an equivalent variational form as follows [10]:

‘‘Find the temperature distribution T(x, y, z, t) inside
the solid body which minimizes the integral:

I ¼ 1

2

Z
V

kx
oT
ox

� �2

þ ky
oT
oy

� �2

þ kz
oT
oz

� �2
"

þ 2 _q� qc
oT
ot

� �
T
�

dV ð5Þ

and satisfies the boundary conditions of Eqs. (1)–(3) as well
as the initial condition of Eq. (4)”.

Generally it is not difficult to satisfy the boundary con-
dition of Eq. (1), but Eqs. (2) and (3) present some diffi-
culty. To overcome this difficulty, an integral pertaining
to the boundary conditions of Eqs. (2) and (3) is added
to the functional of Eq. (5) so that when the combined
functional is minimized, the boundary conditions of Eqs.
(2) and (3) would be automatically satisfied. The integral
pertaining to Eqs. (2) and (3) is given by

I ¼ 1

2

Z
V

kx
oT
ox

� �2

þ ky
oT
oy

� �2

þ kz
oT
oz

� �2
"

þ 2 _q� qc
oT
ot

� �
T
�

dV

þ
Z

S2

qT dS2 þ
1

2

Z
S3

h T � T1ð Þ2dS3 ð6Þ
3.3. Galerkin finite element approach

The finite element procedure using Galerkin method can
be described by the following steps [11,12]:
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� Step 1: Divide the domain V into E finite elements of p

nodes each.
� Step 2: Assume a suitable form of variation of T in each

finite element and express T(e)(x,y,z, t) in element e as
T ðeÞðx; y; z; tÞ ¼ ½Nðx; y; zÞ�~T ðeÞ ð7Þ
where

½Nðx; y; zÞ� ¼ ½N 1ðx; y; zÞ;N 2ðx; y; zÞ; . . . ;N pðx; y; zÞ�
and

~T ðeÞ ¼ T 1ðtÞ; T 2ðtÞ; . . . ; T pðtÞ
� �ðeÞT

with Ti(t) denoting the temperature of node i and Ni(x, -
y,z) the interpolation function corresponding to node i

of element e.

� Step 3: In Galerkin method, the integral of the weighted
residue over the domain of the element is set equal to
zero by taking the weights same as the interpolation
functions Ni. Since the solution of Eq. (6) is not exact,
substitution of Eq. (7) into the differential equation of
heat transfer gives a nonzero value instead of zero. This
nonzero value will be the residue. Hence the criterion to
be satisfied at any instant of time is
Z

V ðeÞ
Ni

o

ox
kx

oT ðeÞ

ox

� �
þ o

oy
ky

oT ðeÞ

oy

� �
þ o

oz
kz

oT ðeÞ

oz

� ��

þ _q� qc
oT ðeÞ

ot

�
dV ¼ 0; i ¼ 1; 2; . . . ; p ð8Þ

By noting that the first integral term of Eq. (8) can be
written as

Z
V ðeÞ

N i
o

ox
kx

oT ðeÞ

ox

� �
dV ¼ �

Z
V ðeÞ

oN i

ox
kx

oT ðeÞ

ox
dV

þ
Z

SðeÞ
Nikx

oT ðeÞ

ox
lx dS ð9Þ

and with similar expressions for the second and third
integral terms, Eq. (8) can be stated as

�
Z

V ðeÞ
kx

oN i

ox
oT ðeÞ

ox
þ ky

oN i

oy
oT ðeÞ

oy
þ kz

oNi

oz
oT ðeÞ

oz

� �
dV

þ
Z

SðeÞ
Ni kx

oT ðeÞ

ox
lx þ ky

oT ðeÞ

oy
ly þ kz

oT ðeÞ

oz
lz

� �
dS

þ
Z

V ðeÞ
Ni _q� qc

oT ðeÞ

ot

� �
dV ¼ 0; i ¼ 1; 2; . . . ; p ð10Þ

Since the boundary of the element S(e) is composed of
SðeÞ1 , SðeÞ2 and SðeÞ3 , the surface integral of Eq. (10) over
SðeÞ1 would be zero (since T(e) is prescribed to be a con-
stant T0 on side SðeÞ1 , the derivatives of T(e) with respect
to x, y and z would be zero). On the surfaces SðeÞ2 and
SðeÞ3 , the boundary conditions given by Eqs. (2) and (3)
are to be satisfied. For this, the surface integral in Eq.
(10) over SðeÞ2 and SðeÞ3 are written in equivalent form as
[11,13]
Z
SðeÞ

2
þSðeÞ

3

N i kx
oT ðeÞ

ox
lx þ ky

oT ðeÞ

oy
ly þ kz

oT ðeÞ

oz
lz

� �
dS

¼ �
Z

SðeÞ
2

N iqdS2 �
Z

SðeÞ
3

hi T ðeÞ � T1
� 	

dS3 ð11Þ

By using Eqs. (6) and (11), Eq. (11) can be expressed in
matrix form as

½KðeÞ1 �~T ðeÞ þ ½K
ðeÞ
2 �~T ðeÞ þ ½K

ðeÞ
3 �

_~T ðeÞ �~P ðeÞ ¼~0 ð12Þ

where the elements of the matrices are given by

KðeÞ1 ij ¼
Z

V ðeÞ
kx

oN i

ox
oN j

ox
þ ky

oNi

oy
oNj

oy
þ kz

oNi

oz
oNj

oz

� �
dV

ð13Þ

KðeÞ2 ij ¼
Z

SðeÞ
3

hN iNj dS3 ð14Þ

KðeÞ3 ij ¼
Z

V ðeÞ
qcN iNj dV ð15Þ

and

P ðeÞi ¼
Z

V ðeÞ
_qN i dV �

Z
SðeÞ

2

qNi dS2 þ
Z

SðeÞ
3

hT1Ni dS3 ð16Þ

The previous expressions (13)–(16) can also be given in
matrix notation as

½KðeÞ1 � ¼
Z

V ðeÞ
½B�T ½D�½B�dV ð17Þ

½KðeÞ2 � ¼
Z

SðeÞ
3

h½N �T ½N �dS3 ð18Þ

½KðeÞ3 � ¼
Z

V ðeÞ
qc½N �T ½N �dV ð19Þ

~P ðeÞ ¼ ~P ðeÞ1 �~P
ðeÞ
2 þ~P

ðeÞ
3 ð20Þ

where

~P ðeÞ1 ¼
Z

V ðeÞ
_q½N �T dV

~P ðeÞ2 ¼
Z

SðeÞ
2

q½N �T dS2

~P ðeÞ3 ¼
Z

SðeÞ
3

hT1½N �T dS3

½D� ¼
kx 0 0

0 ky 0

0 0 kz

2
64

3
75

ð21Þ

and

½B� ¼

oN 1

ox
oN 2

ox
. . .

oN p

ox
oN 1

oy
oN 2

oy
. . .

oN p

oy
oN 1

oz
oN 2

oz
. . .

oN p

oz

2
6666664

3
7777775

ð22Þ
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� Step 4: The element equations (12) can be assembled in

the usual manner to obtain the overall equations as
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½K3� _~T þ ½K�~T ¼ ~P ð23Þ

where

½K3� ¼
XE

e¼1

½KðeÞ3 � ð24Þ

½K� ¼
XE

e¼1

½½KðeÞ1 � þ ½K
ðeÞ
2 �� ð25Þ

and

P
$
¼
XE

e¼1

~P ðeÞ ð26Þ
� Step 5: Eq. (23) have to be solved after incorporating the
Table 4
Composition of the light concrete

Composition Lightweight
aggregate [kg]

Sand
[kg]

Cement
[kg]

Water
[m3 � 10�3]

A 280 208 180 108
B 308 390 170 100
C 336 571 158 90
D 280 952 128 120
E 280 952 168 80
boundary conditions specified over S1 and the initial
conditions.

3.4. Heat transfer problems with radiation

The inclusion of radiation boundary condition becomes
the heat transfer problem in a nonlinear one. Hence an iter-
ative method procedure has to be adopted to find the finite
element solution of the problem. If the heat flux is specified
on the surface and if both convection and radiation losses
take place from the surface, the boundary conditions of the
problem can be expressed as [9]

kx
oT
ox
þ ky

oT
oy
þ kz

oT
oz
þ hðT � T1Þ þ qþ reðT 4 � T 4

1Þ

¼ 0 on the surface ð27Þ

For convenience, we define [10]:

hr ¼ reðT 2 þ T 2
1ÞðT þ T1Þ ð28Þ

so that Eq. (27) can be expressed as

kx
oT
ox
þ ky

oT
oy
þ kz

oT
oz
þ hðT � T1Þ þ qþ hrðT � T1Þ

¼ 0 on the surface ð29Þ

The inclusion of the convection term h(T � T1) in the fi-
nite analysis resulted in the matrix [10,11]:

½KðeÞ2 � ¼
Z

SðeÞ
3

h½N �T½N �dS3

and the vector

~P ðeÞ3 ¼
Z

SðeÞ
3

hT1½N �TdS3

Assuming, for the time being, that hr is independent of the
temperature T, and proceeding as in the case of the term
h(T � T1), we obtain the additional matrix:
½KðeÞ4 � ¼
Z

SðeÞ
4

hr½N �T½N �dS4 ð30Þ

and the additional vector

~P ðeÞ4 ¼
Z

SðeÞ
4

hrT1½N �TdS4 ð31Þ

to be assembled in generating the matrix [K] and the vector
~P , respectively. In Eqs. (30) and (31), SðeÞ4 denotes the sur-
face of the element e from which radiation loss takes place.
4. Numerical simulation method

4.1. General remarks

The above governing equations are discretized by the
finite element method (FEM) [14] and then the thermal
behavior of the internal light concrete multi-holed brick
is optimized [4,5]. The procedure of optimization is based
on the design of experiment (DOE) [15,16], which is a tech-
nique used to determine the location of sampling points.
This technique tries to locate the sampling points such that
the space of random input parameters is explored in the
most efficient way, or obtain the required information with
a minimum of these points. Sample points in efficient loca-
tions will not only reduce the required number of points,
but also increase the accuracy of the response surface that
is derived from the results. In this paper we use a custom-
made design points, according to the experimental tests.
4.2. Experimental determination of the light concrete

thermal conductivity

In order to study the thermal behavior of the brick, we
have determined in the laboratory the relationship between
the light concrete’s density and its thermal conductivity.

With this aim, five tests were carried out corresponding
to five different compositions (termed A, B, C, D, and E,
respectively) of the light concrete according to the UNE-
92-202-89 rule [17] (see Table 4 below).

The experimental values of the thermal conductivity ver-
sus density for the previous different compositions of the
light concrete are shown in Table 5.

In order to use the relationship between thermal conduc-
tivity and density in the subsequent optimization process, it
was necessary to carry out the fitting of the experimental



Table 5
Experimental results of the thermal conductivity versus density

Composition Density
[kg/m3]

Real conductivity
kt [W/m K]

Estimated conductivity
ke [W/m K]

A 660 0.151 0.160
B 800 0.19 0.173
C 1040 0.219 0.223
D 1220 0.269 0.282
E 1330 0.337 0.327
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results (see Fig. 4). The best fitting was the following one,
with a correlation coefficient of 0.97:

ke ¼ C1 � q2 þ C2 � qþ C3 ð32Þ
being C1 = 2.922 � 10�7, C2 = 3.320 � 10�4, and C3 =
2.521 � 10�1.

For the mortar conductivity, three different values have
been taken [2,3], according to Table 6:

4.3. Two-dimensional finite element models, mesh-

independence validation and results

In order to check the thermal performance of the differ-
ent types of bricks (N1–N4), four walls (one per each type
Fig. 4. Experimental results and fitting curve of conductivity vs. density.

Table 6
Mortar thermal conductivities

Conductivity [W/m K]

Insulating mortar 0.3
Light mortar 1.0
Ordinary mortar 1.4

Fig. 5. Two-dime
of brick) have been considered. Each one of them is com-
posed of five bricks as it is shown in Fig. 5.

Then, we have built the two-dimensional finite element
model. For the modeling of this problem, we have used
two-dimensional 8-node quadrilateral finite elements for
the solid area of bricks and one-dimensional 3-node (plus
an extra node) finite elements for the recesses of bricks
(see Fig. 6 below) [18].

In the model, the following thermal conditions are con-
sidered: a 10 W/m2 heat flow in the internal wall side, a
25 W/m2 K external film coefficient and a 273 K ambient
temperature.

In our preliminary computation, mesh-independence of
the solution has been examined for the most complex N4
hollow brick in which all processes of heat transfer have
been considered. Five sets of the mesh sizes have been
checked ranging from 4 to 14 mm. The results of the equiv-
alent thermal conductivity are shown in Fig. 8. Comparing
a 9 mm size mesh with a 4 mm size mesh (see Fig. 7), we
can observed that increasing the mesh size there is only
nsional wall.

Fig. 6. Finite elements: (a) 8-node quadrilateral and (b) one-dimensional
3-node (plus an extra node) elements.

Fig. 7. Validation of mesh independence.



Fig. 8. Mass overall thermal efficiency (left) and equivalent thermal conductivity (right) for the different cases analyzed.
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no more than 0.2% difference in the equivalent thermal
conductivity. In order to reduce the truncation and
round-off errors as well as the computational effort, we
have chosen the optimum mesh size of 6 mm in the subse-
quent simulations.
Table 7
Numerical results for the mass overall thermal efficiency, ethermal_p, in
percentage (m2 K/W/kg)

CASE/brick N1 (%) N2 (%) N3 (%) N4 (%)

Case A 18.26 18.21 18.22 17.95
Case B 14.26 14.25 14.25 13.12
Case C 9.24 9.28 9.25 8.71
Case D 6.77 6.83 6.79 6.54
Case E 5.67 5.73 5.69 5.57
Average 10.84 10.86 10.84 10.38

Table 8
Numerical results for the equivalent thermal conductivity, kequivalent (W/m
K)

Case/brick N1 N2 N3 N4

Case A 0.173 0.174 0.173 0.184
Case B 0.182 0.183 0.182 0.207
Case C 0.216 0.217 0.216 0.240
Case D 0.252 0.251 0.250 0.273
Case E 0.276 0.274 0.274 0.294

Fig. 9. Three-dimensional finite elements: (a) 10-node tetrahedral thermal
solid and (b) thermal surface element.
The determination of the thermal efficiency of a wall is
based on the following expressions [19–21]:
U ¼ q=A
DT

ð33Þ

Rtot ¼
1

U
þ Rsi þ Rse ð34Þ

ethermal p ¼
Rtot

M
ð35Þ

kequivalent ¼
e

1
U þ Rsi þ Rse

ð36Þ
Fig. 10. Three-dimensional finite element model.
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Fig. 8 (left) shows the mass overall thermal efficiencies for
all analyzed cases, and it reveals that the differences be-
Fig. 11. Mesh of thermal surface elements: vertical mesh in recesses (left)

Fig. 12. Temperature distribution in walls for the following cases: (a) Case A, in
Case E, insulating mortar; (e) Case E, light mortar and (f) Case E, ordinary m
tween them are very small, being the brick N4 the worst
of them. From numerical results in Table 7, we can see that
and horizontal mesh in holes between the bricks and mortar (right).

sulating mortar; (b) Case A, light mortar; (c) Case A, ordinary mortar; (d)
ortar.
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the best brick from the thermal point of view is the brick
N2, since its average value (10.86%) is the biggest one.

On the one hand, we show the numerical results for the
equivalent thermal conductivity in Table 8. From the point
of view of this parameter the best bricks are N1, N2 and N3
with small differences between them (see Fig. 8 right). On
the other hand, this behaviour corresponding to intermedi-
ate bricks between massive and lighter bricks [2].

The differences between thermal properties of bricks N1,
N2 and N3 are very small (see Tables 7 and 8). However, it
is necessary to take into account additional considerations,
such as the ergonomics (or human factors), that is, the
application of scientific information to the design of
objects, systems and environment for human use. In this
case, aspects such as the total mass and the shape of the
brick are very important. In this way, the brick has to be
well designed [22] in order to maximize productivity by
reducing operator fatigue and discomfort. The brick N2
is the lightest one and it presents the best grip. As a conse-
quence of these previous results, then we carry out the
Table 9
Numerical results

Case ke

(W/m K)
kmortar

(W/m K)
U

(W/m2 K)
Rtot

(m2 K/W)
kequiv

(W/m K)

Case 1 0.160 0.300 0.466 2.189 0.160
Case 2 0.160 1.000 0.511 2.011 0.174
Case 3 0.160 1.400 0.526 1.956 0.179
Case 4 0.173 0.300 0.488 2.098 0.167
Case 5 0.173 1.000 0.533 1.935 0.181
Case 6 0.173 1.400 0.549 1.883 0.186
Case 7 0.223 0.300 0.567 1.828 0.191
Case 8 0.223 1.000 0.612 1.706 0.205
Case 9 0.223 1.400 0.629 1.665 0.210
Case 10 0.282 0.300 0.653 1.610 0.217
Case 11 0.282 1.000 0.698 1.517 0.231
Case 12 0.282 1.400 0.715 1.485 0.236
Case 13 0.327 0.300 0.714 1.486 0.236
Case 14 0.327 1.000 0.759 1.408 0.249
Case 15 0.327 1.400 0.777 1.380 0.254

Fig. 13. Overall heat transfer coefficient versus material thermal conductivi
requirements.
three-dimensional thermal analysis of the brick N2 by
means of the finite element method in the following section.

4.4. Three-dimensional finite element models and results

We have built a three-dimensional finite element model
of a wall made of N2 bricks and mortar (see Fig. 2 above).
For the modeling of bricks and mortar we have used solid
type tetrahedral finite elements with 10 nodes. In order to
simulate the convection and radiation phenomena in the
recesses, surface elements with 9 nodes (8 nodes + 1 extra
node included) have been used (see Fig. 9 below) [18].

The complete finite element model of the wall can be
appreciated in Fig. 10. A detail of the thermal surface ele-
ments is shown in Fig. 11. In this model we have considered
the same thermal conditions than the two-dimensional
model. Keeping in mind the same geometrical configura-
tion of the brick N2, varying the thermal conductivities
both in the brick and in the mortar, we present as results
the temperature distribution in the wall (see Fig. 12).

The results obtained by FEM are processed in order to
obtain the thermal characteristic values of the walls [2–
5,21].

Comparing to the numerical results (Table 9 and
Fig. 13) with the CTE rule requirements [1] (see Table 3
above), we see that the thermal performance of the new
light concrete hollow bricks analyzed is in agreement with
the objective values established in the CTE rule. At the
same time, we have calculated the distribution according
to climatic zones for the 52 Spanish capitals as well as
the percentage of bricks fulfilling the CTE rule require-
ments (see Fig. 14).

After examining the results obtained numerically, it can
be assumed that the optimization procedure constitutes a
reasonable approach to choose the appropriate type of
brick that satisfies the CTE rule requirements. The finite
element model reproduces quite accurately the heat trans-
fer in walls made of lightweight aggregate concrete with
open structure and complex shapes with holes.
ty, for the fifteen cases analyzed above and walls that satisfy the CTE



Fig. 14. Climatic zones distribution of Spanish capitals and kind of walls
(cases analyzed) that satisfy the requirements of thermal performance
according to the CTE rule: zone A (six capitals and all cases analyzed),
zone B (10 capitals and all cases analyzed), zone C (14 capitals and 86.7%
of cases analyzed), zone D (18 capitals and 66.7% of cases analyzed) and
zone E (four capitals and 46.7% of cases analyzed).

1540 J.J.d. Coz Dı́az et al. / International Journal of Heat and Mass Transfer 51 (2008) 1530–1541
5. Conclusions

In this work, the finite element method is used for find-
ing approximate solution of the heat transfer equation,
both in two and three-dimensional models. In the first
place, the numerical thermal analysis technique (FEM)
has been carried out to study four different kinds of walls
in two dimensions, made up of five compositions of light
concrete hollow bricks, according to the experimental fitted
results. With the increase of the length, size and distribu-
tion of the holes, it is possible to modify the thermal perfor-
mance of the bricks. On the basis of the mass overall
thermal efficiency and the equivalent thermal conductivity,
we have selected the best candidate from the thermal point
of view.

Secondly, we have carried out the three-dimensional
finite element analysis for the best candidate, varying the
mortar and brick conductivities obtained from experimen-
tal tests in laboratory. The equivalent thermal conductivity
depends on three heat transfer processes: the heat conduc-
tion through the solid brick and mortar, the radiation
between recess surfaces and the natural convection in ver-
tical and horizontal holes. According to the numerical
results, we see that the overall heat transfer coefficient
depends on both the material and mortar thermal conduc-
tivities. In order to select the appropriate wall satisfying the
CTE requirements, Fig. 13 shows three well-defined cross
sections.

Finally, we have compared the thermal performance of
the different types of bricks, according to the CTE Spanish
rule requirements showing the results obtained for the 52
Spanish capitals in Fig. 14.

Overall heat transfer coefficient increases if the mortar
and material conductivities increase. The bigger mass over-
all thermal efficiency, the better thermal insulation and the
lower wall’s weight. Therefore, the support structure of
these walls will be subjected to smaller dead loads and
the best brick from the average mass overall thermal effi-
ciency point of view was the brick N2.

To define the geometry of a hollow brick like this is very
cumbersome using an analysis program by finite elements.
For this reason, a three-dimensional parametric design pro-
gram was used in order to make up the five hollow bricks.

The finite element model reproduces quite accurately the
heat transfer mechanism in walls made up of lightweight
aggregate concrete with open structure and complex shapes
of recesses. In this sense, the key step in engineering anal-
ysis is therefore choosing appropriate mathematical mod-
els. These models will clearly be selected depending on
what phenomena are to be predicted, and it is most impor-
tant to select mathematical models that are reliable and
effective in predicting the quantities sought [10–14].

As final conclusion, for housing and industrial struc-
tures there is a great interest in light building materials with
good physical material performance, with respect to an
energy conscious and ecological design, which fulfil all
strength and serviceability requirements. From this point
of view, the designer can use the results shown in the pre-
vious section in order to obtain the best wall configuration
according to the CTE rule requirements.
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